The neutralization of Xiapu Min tones in disyllabic tone sandhi forms Yuan Chai | University of California San Diego | yuc521@ucsd.edu

Shihong Ye | Second High School Attached to Beijing Normal University | bnumiyaye@163.com

https://yuanucsd.github.io/website/

Introduction

- Tone sandhi results can result in neutralization.
 - In production, tone neutralization can be either complete (e.g. Taiwanese Min sandhi circle: Chien & Jongman, 2018; Myers & Tsay, 2008) or **incomplete** (e.g. Mandarin T3-T2 neutralization: Chen & Yuan, 2007; Peng, 2000).
- The **degree of neutralization** can be predicted by the degree of productivity of sandhi in nonce words. Productive sandhi usually results in incomplete neutralization; unproductive sandhi results in complete neutralization (Chien & Jongman, 2018).
- Xiapu Min: spoken in Xiapu County, Eastern Fujian, China (Wen, 2015)
- Seven-tone system: Smooth tones: T44, 11, 23, 35, 42; Checked tones (short and ending in glottalization): T5, 2
- Tone sandhi system in Xiapu Min: \bullet

		Citation	Sandhi	Transcription	Gloss
Г	Left-Edge	2 7		[xu44 tsɔŋ44]	服装 "clothes
		23	44/ X	[xu44 kain44]	护工 "caretak
		44		[xu44 tçin42]	肤浅 "superfie
		5]	<pre>→ 55/X</pre>	[i55 tiaŋ23]	一定 "certain'
		35		[i55 ŋuai23]	意外 "acciden
L		42 –		[i55 xeu23]	以后 "later"
	Right-Edge	11	42 /{44,42}	[kin44 ŋy42]	金鱼 "goldfish
		42		[iŋ44 ŋy42]	英语 "English
		$\begin{bmatrix} 2 \\ 5 \end{bmatrix} \longrightarrow 5/\{44, 42\}$	5/{// / 2]	[peu55 pa5]	表白 "confess
			[paŋ55 pa5]	半百 "half-hu	

Left-edge sandhi is more productive than right-edge in Xiapu Min. ullet

Research questions

- **Degree of neutralization:** Does tone sandhi in Xiapu Min result in \bullet complete neutralization in production in Xiapu Min, in terms of FO, voice quality, and duration?
- **Productivity and neutralization:** Is **right-edge** neutralization more complete than **left-edge**?

Method

- Subjects: Four speakers of Xiapu Min
- **Stimuli:** Disyllabic compounds: Neutralized targets are minimal pairs; Tone of the environment segment is controlled; 101 tokens * 2 reps

Sandhi neutralization results

UC San Diego

Acoustical Society of America Fall Meeting 2019

Result summary

	CITATION accuracy	SANDHI accuracy
		(chance level)
T44 vs 23 vs 2	98%	59% (34%)
T42 vs 35 vs 5	97%	61% (34%)
T42 vs 11	100%	46% (53%)
T5 vs 2	100%	61% (58%)

- The classification of **left-edge** sandhi tones was **above** chance and the LDA models were significant.
- The classification of **right-edge** sandhi tones was **below or near chance** and the LDA models were **NOT** significant.
- The phonation differences between checked and unchecked tones are largely neutralized in sandhi.
- Citation tones are differentiated by FO and H1* (lower particularly for checked tones)
- Sandhi tones are differentiated by FO and duration

Conclusions

- Sandhi in Xiapu Min results in tonal neutralization in production. The differences in **FO** and **duration** are **preserved** in sandhi forms but the **phonation difference** is **lost**.
- The neutralization at **right-edge** is **more complete** than at **left-edge**, confirming that **less productive** sandhi results in **more complete** neutralization in production.

• Chai, Y. & Garellek, M. 12/2019. Using H1 instead of H1–H2 as an acoustic correlate of glottal constriction. ASA 2019. Retrieved at

https://yuanucsd.github.io/website/publications.html Chen, Y., & Yuan, J. (2007). A corpus study of the 3rd tone sandhi in Standard Chinese. INTERSPEECH-2007, 2749-2752

• Chien, Y. F., & Jongman, A. (2018). Tonal neutralization of Taiwanese checked and smooth syllables: An acoustic study. *Language and speech*, 62, 452–474. • Myers, J., & Tsay, J. (2008). Neutralization in taiwan southern min tone sandhi. Interfaces in Chinese phonology, 47-78.

• Peng, S. H. (2000). Lexical versus 'phonological' representations of Mandarin sandhi tones. *Papers in laboratory phonology V: Acquisition and the lexicon*, 152-167. • Wen, J. (2015). A study on the phonology of Xiapu Dialect. (Unpublished master's thesis). Fujian Normal University, Fuzhou, China